

4Pay Networks GmbH Geschäftsführer: Martin Kolisch Commerzbank Düsseldorf
Fischerstraße 49 HRB79650, Amtsgericht Düsseldorf IBAN DE91 3004 0000 0151 5154 00
D - 40477 Düsseldorf Steuernummer 103/5751/2620 BIC COBADEDDXXX

Interface description

 mobilepay

 Version: 2.10

 Date: 29.06.2017

page 2/73

Change History ... 4

1 Introduction .. 6

2 Functions ... 8

2.1 Billing Variants... 8

2.1.1 SMS Billing ... 8

2.1.1.1 Standard Billing .. 8

2.1.2 Web Billing.. 8

2.1.3 Mobile Billing .. 8

2.2 Billing Types .. 8

2.2.1 Single Billing ... 9

2.2.2 Subscription .. 9

2.2.2.1 Authorization Handshake ... 9

2.2.2.2 Welcome SMS ... 9

2.2.2.3 Stop Subscription Callback .. 10

2.2.2.4 Change of Terms .. 10

2.2.2.5 Types of Subscriptions ... 10

2.2.3 Cumulative Billing ... 10

2.2.4 Miscellaneous .. 11

2.2.4.1 Downscaling.. 11

3 Technical Implementation .. 12

3.1 HTTP Interface .. 12

3.2 Java Client .. 13

4 Operations ... 14

4.1 Authorization ... 14

4.1.1 Standard SMS Authorization .. 14

4.1.1.1 Request Parameters .. 15

4.1.1.2 Example: SMS Billing via Short Code .. 17

4.1.1.3 Example: SMS Billing via Web Application ... 21

4.1.1.4 Example HTTPS Request .. 23

4.1.2 Web Authorization .. 24

4.1.2.1 Web Authorization process without redirect 24

4.1.2.2 Web Authorization process with redirect .. 25

4.1.2.3 Authorization Request .. 26

4.1.2.4 PIN Validation .. 27

4.1.2.5 Example: Web Billing ... 28

page 3/73

4.1.2.6 Example HTTPS Requests .. 32

4.1.3 Mobile Billing Authorization ... 32

4.1.3.1 Authorization Request .. 34

4.1.3.2 Example: Mobile Billing .. 36

4.1.3.3 Example HTTPS Request .. 37

4.2 Billing Request .. 38

4.2.1 Example HTTPS Request .. 39

4.3 Bulk Billing .. 39

4.3.1 Billing Request.. 39

4.3.1.1 Example HTTPS Request .. 40

4.3.2 Callback Request ... 41

4.3.3 Java Client .. 41

4.4 Refunding .. 43

4.4.1 Example HTTPS Request .. 44

4.5 Increasing the Amount .. 44

4.5.1 Example HTTPS Request .. 45

4.6 Stopping a Subscription .. 45

4.6.1 Example HTTPS Request .. 46

4.7 Looking Up the Mobile Network Operator ... 46

4.7.1 Example HTTPS Request .. 47

4.8 Customizing the Message Texts.. 47

4.8.1 Wild Cards .. 48

4.8.2 Order of Wild Cards .. 48

5 Status Codes ... 49

6 Country Specifics ... 51

7 MSISDN Lookup for Mobile Billing ... 52

7.1 Determining the MSISDN .. 53

7.1.1 Phase I ... 53

7.1.2 Phase II .. 53

7.1.3 Querying for the MSISDN ... 54

7.2 Code Example .. 54

Annex 1 .. 56

page 4/73

Change History

Version Date Author Description

1.0 15.09.2004 Claus Leonhardt Released version 1.0

1.1 09.10.2004 Claus Leonhardt Introduced request stopsubscription

1.2 12.11.2004 Claus Leonhardt Added field amount in requests bill- and refund

Added field callbackurl in request smsauthorize

1.3 19.11.2004 Claus Leonhardt Introduced request getmno

Documented restrictions with billing in
subscription transactions

1.4 01.03.2005 Claus Leonhardt WAP billing: added parameter nabyuser to
indicate missing authorization of payment by the
user to call to the errorURL

1.5 04.05.2005 Claus Leonhardt Added optional parameters txt1, txt2, txt3 to
authorization request

1.6 01.09.2005 Claus Leonhardt Added error message LIMIT_EXCEED

 11.10.2005 Claus Leonhardt Introduced Easy Billing

1.7 02.03.2006 Claus Leonhardt Introduced Bulk Billing

 06.03.2006 Claus Leonhardt Introduced option for returning more verbose
result of billing operation

1.8 14.02.2007 Jürgen Brardt Introduced MSISDN lookup

1.9 31.08.2007 Andreas Pritzlaff Review

1.9 11.12.2007 Nils Runge Review and extensions

1.9 05.02.2008 Nils Runge Documented specifics for different countries,
formatting

2.0 22.05.2008 Lars Korbel Formatting

2.0 30.06.2008 Nils Runge Reworked chapter 5 in preparation of introduction
of new billing types

2.1 17.09.2009 Nils Runge Documented technical changes in authorization
response

Review and corrections

2.2 30.12.2009 Nils Runge Added parameter mccmnc for authorization
request

2.2 21.10.2010 Henrieta Kaniewski Review and formatting

2.3 30.12.2010 Nils Runge Introduced Downscaling and Stop Subscription
Callback

2.4 18.04.2011 Daniel Sedlack Review and formatting

2.5 26.05.2011 Daniel Sedlack Introduced additional status codes

2.6 11.06.2012 Michael Suthe Introducing the parameters description, gtc, im-
print, contact and faq for Mobile Internet Pay-
ment, introducing restrictions for 3rd-party panel
templates.

2.7 01.01.2014 Henrieta Kaniewski Review and formatting

page 5/73

Version Date Author Description

2.8 06.08.2014 Henrieta Kaniewski Review and formatting

2.9 14.06.2017 Christoph Berger Reworked chapter 4.1.3.

Added chapter 4.1.3.2 “Web Billing with redirect”

4.2 Added parameter msisdn, mcc, mnc to Table
1 Response: Bill

Removed former chapter 7.1 “Technical
Prerequisites“

WAP Billing renamed as Mobile Billing

Review and formatting

2.10 29.06.2017 Tarek El-Sibay Fixed parameter names in msisdn service

 29.06.2017 Christoph Berger Removed Easy Billing

Review and formatting

page 6/73

1 Introduction

Many mobile network operators (MNOs) allow their users to make purchases on third
party platforms which will be charged to their mobile phone bill. Third parties can get
access to this service through 4Pay Networks which is connected to the relevant
MNO’s billing interfaces, required for using this payment method.

Figure 1 Structure mobilepay (Germany)

From a technical point of view these interfaces vary widely between operators. In
addition to this, a contractual agreement between the third party and each operator is
required to be able to use these interfaces. Furthermore, prior to each payment
transaction, the customer's network operator needs to be determined to select the
correct connection to be used. This requires access to a number lookup service, like
the Zentrale Master Routing Datenbank (zMRDB) in Germany, that in turn requires
additional effort in implementing the payment solution and entails additional costs for
the third party.

4Pay Networks GmbH (“4Pay”) has developed a unified mobile payment solution
system called mobilepay. With mobilepay you can perform micropayment transactions
for all German mobile network providers as well as some foreign ones through one
single interface. All existing technical distinctions between the network operators will
be handled by 4Pay. As an additional benefit, there is no need for you to sign
agreements contracts with each operator directly as the contract with 4Pay already
provides access to mobile subscribers in the relevant countries.

page 7/73

The workings of mobilepay are displayed schematically in Figure 1. Each payment
transaction is being performed by the contracting party via mobilepay. That system will
automatically determine the subscriber's mobile network operator and employ the
connection suitable to initialise the actual billing. In this process, the contracting party
will solely be required to communicate with the mobilepay system while receiving
feedback concerning the payment transaction's progress.

All information needed for using the mobilepay interface will be discussed in this
document.

For Premium SMS services, please use the PSMS interface description in Annex 1.

page 8/73

2 Functions

The mobilepay system offers three different billing variants:

• SMS Billing

• Mobile Billing

• Web Billing

All three of these have in common the ability to either authorize a single payment or a
series of multiple payments in a subscription. When using a single-transaction, the
customer authorizes the payment for a service or product requested by her. Hence,
she can only be billed once per transaction. In contrast to this, subscriptions offer the
capability to perform repeated billings in one transaction after authorising only once.
Further information on subscriptions can be found in chapter 2.2.2.

2.1 Billing Variants

2.1.1 SMS Billing

2.1.1.1 Standard Billing

When using SMS Billing, the subscriber orders a service or product by sending an SMS
to a free short code or entering her MSISDN on a website. In return, an SMS is sent
informing her of the resulting costs and asking her to confirm the transaction by replying
to the message just received.

2.1.2 Web Billing

Web Billing is a billing variant based on the customer requesting a product or service
by entering her MSISDN on the contracting party's website. In return, a PIN will be sent
by SMS which the subscriber is required to enter on the website in order to validate
the payment transaction.

2.1.3 Mobile Billing

Mobile Billing (former WAP Billing) is a third billing variant. It requires the subscriber to
be in possession of a mobile internet providing device she uses to request a product
or service. A confirmation page is sent to her and she is asked to validate the payment
transaction directly on that page. The actual billing may then be performed right after
the successful completion of this process.

2.2 Billing Types

Three different types of billings exist: single billing, subscription and cumulative billing.
They are being explained in the following paragraphs.

page 9/73

2.2.1 Single Billing

When using a single billing transaction, the customer may only be billed once. This is
a two-step process consisting of authorization and the subsequent debiting of the
customer. After the debiting was performed, the transaction is closed. If additional
debits are to be performed, new transactions need to be created for each one.

2.2.2 Subscription

In contrast to single billing transactions, subscriptions (multiple billings) allow the
contracting party to perform several debits in a single transaction.

Analogue to the flow of single billing transactions, subscriptions work as a two-step
process. In the first phase, authorization has to be performed analogous to the single
billing. In difference to the authorization performed when using single billing, the
authorization's type needs to be set to multiple to indicate that a subscription is to be
authorised (see chapter 4.1). The subscriber will be explicitly notified about this fact in
the validation request sent by SMS (see chapter 2.2.2.1). After successful validation,
the contracting party will be able to debit the customer according to the boundaries
determined in the contractual details set for the respective service without performing
authorization anew.

However, take note of the fact that mobilepay only serves as a mediator between the
contracting party and the mobile network operators. As a direct result of this, the
system does not provide functionality for managing subscriptions. Therefore, this
needs to be implemented on the side of the contracting party. Not only does this
concern the subscription’s maturity and eventual termination (if applicable), but also
keeping track of the points in time when billings are to be performed and the amounts
to be debited. This means that the contracting party's system is required to handle
event and time-based subscriptions in accordance to the billing service's description.
For each billing performed the contracting party may bill an amount equal or less than
the amount originally specified in the authorization. Also, the contracting party is
obligated to terminate subscriptions after reaching maturity or on request by the
subscriber. Furthermore, it is part of the contracting party's obligations to ensure
conformity to any existing regulatory rules concerning the service being run.

In addition to this, network operators may exist that enforce the subscription's service
description by technical means. This, however, does not release the contracting party
from the obligations stated above.

2.2.2.1 Authorization Handshake

Subscriptions require the subscriber to confirm having taken note of the service's
description and its pricing. It is mandatory to inform the customer about the name of
the company providing the service, the product's name, the service's price and the
interval of billing.

2.2.2.2 Welcome SMS

After performing the authorization handshake for the service, the contracting party is
liable to inform the subscriber by SMS about the name of the company providing the

page 10/73

service, a hotline number for contacting said company and the terms of the
subscription’s termination.

Sending welcome SMS is done provider-dependent by either the network operator or
the mobilepay system. In the latter case, it is possible for the contracting party to
individualize the texts sent upon consultation with 4Pay. Further details can be found
in chapter 4.8.

2.2.2.3 Stop Subscription Callback

If a subscription is terminated using the stopsubscription command (see chapter 4.6),
mobilepay will inform a third party about this event using an HTTP request as a
callback. This request will contain the transaction ID (TXID) and the service's name as
POST parameters. To receive this callback, the URL, it is to be performed on, needs
to be supplied with the authorization request as parameter stopsubcallbackurl.

2.2.2.4 Change of Terms

Changing the terms of a service (billing interval, pricing) requires the customers of
existing subscriptions to renew their approval.

2.2.2.5 Types of Subscriptions

It can be differentiated between event- and time-based subscriptions and combinations
of both. When using an event-based subscription, a billing can be triggered by the
occurrence of certain events like the subscriber requesting content. When using time-
based subscriptions, billings will always be performed in a regular interval.

2.2.3 Cumulative Billing

Cumulative billing is an extension of the single billing mechanism. After successful
authorization, the amount to bill can be increased repeatedly in a short span of time
before the actual billing is performed using the final amount (see chapter 4.5).

One scenario for using this feature is services billing the customer for a certain time
interval (i.e. a voice-based service billed every minute). The subscriber's balance (in
case of pay as you go) will be checked for each increase. After the last increase the
complete amount may be billed by executing the bill command. In contrast to using the
subscription mechanism, this leads to only one billing position appearing on the
customer's invoice while using a subscription would lead to each increase appearing
as a single billing. Furthermore, unlike subscriptions cumulative billings can only have
one billing request executed per transaction and a transaction is considered finished
after the billing has been executed.

page 11/73

2.2.4 Miscellaneous

2.2.4.1 Downscaling

The Downscaling mechanism provides the option of retrying a previously failed billing
with a lower amount of money to bill. This opens the possibility of using up the entire
balance on a pay as you go SIM card.

There are several different methods currently supported by mobilepay for calculating
the reduced amount.

• Multiplication with a factor (for instance 0.5)

• Subtraction of a fixed amount (for instance 50 Cent)

• Combinations of 1 and 2

• Trying to bill a series of fixed amounts (i.e. 300 Cent, 200 Cent, 150 Cent)

 Downscaling can be activated and configured for each service individually upon
consultation with 4Pay.

page 12/73

3 Technical Implementation

For each billing variant, the contracting party has to abide by the given flow. All variants
have in common the need for authorization by the customer prior to any other operation
being executed. The authorization's technical specifics vary between billing variants.
They are explained in detail in chapter 4.1. Authorization is a two-step process. First,
the authorization request has to be sent to mobilepay. This request will trigger a check
whether or not the designated amount is available to be debited. This check is
especially relevant in the case of pay as you go subscribers whose balance may not
be sufficient for the billing to be performed. If it is not possible to bill the designated
amount, mobilepay will report this using its interface. If, however, the check is
successful, the subscriber needs to validate the payment's execution. It is only after
the successful validation and having rendered the service requested that the
contracting party may execute the actual billing request.

Communication between the contracting party's system and the mobilepay server
takes place using a standard HTTP or HTTPS connection, the latter being preferred
due to security reasons. This enables the implementation of the mobilepay system’s
Application Programming Interface (API) using well-established tools and procedures.
If this is, however, not desired, 4Pay provides its customers with a ready-to-use Java-
based client that may be included into the contracting party's own application. This
client is delivered containing JSP-based example applications for using Mobile (WAP),
Web and SMS Billing.

3.1 HTTP Interface

When using the HTTP(S) interface directly, either HTTP-GET or HTTP-POST requests
may be used for executing commands. The response's HTTP body consists of an XML
structure containing the different fields and respective values belonging to the
response. These structures are being discussed in detail in the following chapters.

The level of detail for each response may be influenced by using the optional request
parameter detail. If this value is set to true, the response will contain the additional field
bookingmessage. This in turn contains extended information in a non-specified format
like status messages sourced from the billing providers directly. An example for a
response without extended information is given in XML 1. Another example for a
response including the bookingmessage field is shown in XML 2.

<result>
 <statustext>OK</statustext>
 <statuscode>100</statuscode>
</result>

XML 1 Example: Response with detail=false

page 13/73

3.2 Java Client

The Java client contains classes enabling the use of all the available billing variants. It
is possible to use single billing transactions as well as subscriptions. In addition, the
client also supports so called Bulk Billing, facilitating the billing of a larger set of
subscribers simultaneously (see chapter 4.3).

Central to the client's usage are the class AbstractMobilePaymentClient and its
concrete implementations of which there are four, representing the different billing
variants (see chapter 2.1):

• SmsPaymentClient

• WAPPaymentClient

• WebPaymentClient

These clients may be instantiated by using their respective constructors and can then
be used to execute the appropriate billing commands. For each command there is a
corresponding method named after the command's designation as established in
chapter 4, prefixed with do (i.e. doAuthorize(), doBill()). Furthermore, a method named
setDetail() exists that may be used to activate detailed responses.

As a result, an object of a class derived from AbstractCommandResult is returned.
Depending on the command executed, these result objects may contain different
values which can be extracted using the respective getters. In general, statusCode and
statusText will be available. All other fields may potentially contain the value null.

The methods for executing commands may throw a TechnicalProblemException if
technical problems arise while executing the command. If this is the case, the message
contained in the exception will explain these circumstances in greater detail.

Further details for using the client can be taken from the Javadoc documentation
belonging to the client itself.

<result>
 <statustext>OK</statustext>
 <statuscode>100</statuscode>
 <bookingsmessage>D1: OK</bookingsmessage>
</result>

XML 2 Example: Response with detail=true

page 14/73

4 Operations

The mobilepay system provides access to a set of operations for conducting payment
transactions. These may be used in the manners described in chapter 3.

A typical transaction consists of two phases: authorization and billing. The
authorization phase is needed for ensuring that the billing is actually possible.
Depending on the type of billing used, a validation of the transaction by the subscriber
may be required. After successful authorization and having rendered the service
requested, the contracting party may execute the billing request.

The operations mobilepay provides are described in the following sections.

4.1 Authorization

Authorization is the mandatory first step of each billing transaction. Its purpose is to
ensure the requirements for performing the subsequent billing are met, reserve the
amount of money to be debited and ask for the subscriber's validation if necessary.
However, the authorization's exact flow differs between billing variants (see chapter
2.1).

4.1.1 Standard SMS Authorization

Standard SMS authorization is a procedure that consists of SMS-based validation of
the payment transaction by the subscriber. To this end, the contracting party creates a
new payment transaction by sending an HTTP request to the mobilepay system
containing the smsauthorize command. Thereupon, an SMS will be sent to the
subscriber informing her about the requested service's costs and asking her to validate
the payment by replying to the SMS just received. That message is either being sent
by 4Pay (for Telekom) or the network operators (for Vodafone and o2). The request
flow is being displayed in Figure 2. After having received the confirmation message, the
mobilepay system will inform the contracting party about the transaction's successful
authorization using a callback HTTP request. The contracting party may then, after
having rendered the service requested, perform the actual billing (bill).

page 15/73

4.1.1.1 Request Parameters

The parameters required for the HTTP request starting the authorization are listed in
Table 2. The parameters contained in the HTTP response sent by mobilepay can be
seen from Table 3.

 SMS Billing

End Customer Application Server
merlix mobilepay

Server

request for content by MSISDN

smsauthorise

SMS containing confirmation request

authorisation of payment by reply to previous SMS

sending content

TXID

status message (payment authorised: yes)

bill

billing status

refund

refuningd status

For each billing process, one

refunding is possible.

For multiple billing more than one

call possible.

if so, message to customer

acknowledgement

Figure 2 Process: Standard SMS Billing

page 16/73

Parameter Description

command smsauthorize

servicename The name of the billing service to be used for the payment
transaction. It will be chosen by 4Pay and communicated to the
contracting party.

password The password belonging to the service. It will be chosen by
4Pay and communicated to the contracting party.

amount The gross amount the customer is billed. The amount has to be
given in the smallest possible unit of currency. The currency
used is set to a fixed value on a per-service basis. For instance,
300 (Cent) needs to be sent for invoicing a customer 3 Euro.

type The type of billing to perform (see chapter 2.2)

Values available: {single, multiple, cumulative}

When using single billing, exactly one debiting may take place
per authorised transaction. Multiple billings, on the other hand,
allow for several debits in a single transaction. Cumulative
billings enable increasing the amount repeatedly before the
debiting is affected.

msisdn The MSISDN to bill

mccmnc Mobile Country Code (MCC) and Mobile Network Code (MNC)
of the mobile network operator, if known

Format: nnn-nn or nnnnn, e.g. 262-01 or 26201 for Telekom
(262=MCC, 01=MNC).

callbackurl The URL to call using an HTTP request after authorization
finished successfully. That request contains the transaction's ID
(txid) and the service's name (servicename).

stopsubcallbackurl The URL to call using an HTTP request after a subscription has
been terminated. That request contains the transaction's ID
(txid) and the service's name (servicename) as POST
parameters (see chapter 2.2.2). Only used for subscriptions.

txt1, txt2, txt3 Texts used to substitute the variables in the confirmation SMS
to send (see chapter 4.8).

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 2 Request: SMS Authorize

page 17/73

Table 3 Response: SMS Authorize

4.1.1.2 Example: SMS Billing via Short Code

The code snippets under Code 1 demonstrate how SMS Billing can be implemented
when the customer's orders are being received using a short code.

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5).

statustext A text describing the status code in text form (see chapter 5).

txid A unique ID identifying the transaction. It is generated
automatically by mobilepay for each transaction.

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.
This parameter will be returned only if detail had been set to true
in the initial request.

provider Name of the provider used for authorization.
This parameter will be returned only if detail had been set to true
in the initial request.

mcc Mobile Country Code of the provider used for authorization.
This parameter will be returned only if detail had been set to true
in the initial request.

mnc Mobile Network Code of the provider used for authorization.
This parameter will be returned only if detail had been set to true
in the initial request.

mtid ID of the confirmation SMS sent.
This parameter will be returned only if detail had been set to true
in the initial request.

page 18/73

package sandbox;

import de.4Pay.client.mobilepay.SmsPaymentClient;

import de.4Pay.client.mobilepay.MobilePaymentException;

import de.4Pay.client.mobilepay.TechnicalProblemException;

/**

 * This is a simple demonstration how SMS Billing may be implemented. The

 * processes may be seen from the comments on each individual method.

 * In practical scenarios this process should incorporate use of

 * the callback request sent by mobilepay. That callback is being

 * executed once the subscriber has validated the payment transaction

 * by replying to the confirmation SMS sent to her.

 * Only after successful validation the bill request may be executed.

 *

 */

public class SmsBillingDemo {

 SmsPaymentClient smsPaymentClient = new SmsPaymentClient("PaymentServer-Url",

 "servicename", "password");

 String msisdn = "491721234567";

 int amount = 199;

 boolean multiple = false;

 String myCallbackUrl = "http://www.mycallbackserver.de/mycallbackcontext";

 String txid;

 boolean authorized = false;

 /**

 * An exemplary process for SMS Billing

 *

 * @param args

 */

 public static void main(String[] args) {

 try {

 SmsBillingDemo smsBillingDemo = new SmsBillingDemo();

 System.out.println("Starting Authorization");

 smsBillingDemo.start();

 System.out.println("Authorization successful."

 + "First attempt to bill in 30 seconds");

page 19/73

 try {

 Thread.sleep(30000);

 } catch (InterruptedException e1) {

 }

 smsBillingDemo.finish();

 System.out.println("Billing successfully completed.");

 } catch (TechnicalProblemException e) {

 System.err.println("Technical problem.");

 e.printStackTrace();

 } catch (MobilePaymentException e) {

 System.err.println("Billing not possible.\n status code: " + e.getStatusCode()

 + " status text:" + e.getStatusCode());

 e.printStackTrace();

 }

 }

 /**

 * Executes the SMS Authorize command.

 * A second methods of name <i>authorize</i> exists, having an

 * additional parameter, that may be used to pass a callback URL

 * that will be called once the subscriber has replied to the

 * confirmation SMS.

 *

 * <code>txid = smsPaymentClient.authorize(msisdn, amount, multiple,

 * myCallbackUrl);</code>

 *

 * @throws TechnicalProblemException

 * @throws MobilePaymentException

 */

 public void start() throws TechnicalProblemException, MobilePaymentException {

 txid = smsPaymentClient.authorize(msisdn, amount, multiple);

 }

 /**

 * Calls {@link SmsBillingDemo#finish()} and checks whether or not validation

 * has already been performed. If it has not been performed, the method will

 * retry after 1 minute. Will give up after 10 tries.

 *

page 20/73

 * @throws TechnicalProblemException

 * @throws MobilePaymentException

 */

 public void finishWithRetry() throws TechnicalProblemException,

 MobilePaymentException {

 int tries = 0;

 boolean retry = true;

 while (tries++ < 10 && retry) {

 try {

 finish();

 retry = false;

 } catch (MobilePaymentException e) {

 if(!e.getStatusCode().equals("410")) {

 throw e;

 }

 }

 System.out.println("Billing not yet authorised. Waiting 1 minute....");

 try {

 Thread.sleep(60000);

 } catch (InterruptedException e1) {

 }

 }

 }

 /**

 * Executes the billing.

 * May only be successful after the subscriber has already validated the

 * transaction by replying to the confirmation SMS.

 *

 * @throws TechnicalProblemException

 * @throws MobilePaymentException

 */

 public void finish() throws TechnicalProblemException, MobilePaymentException {

 smsPaymentClient.bill(txid);

 }

}

Code 1 Example code SMS Billing

page 21/73

4.1.1.3 Example: SMS Billing via Web Application

This example demonstrates how SMS Billing may be used if the customer places an
order using a website. The page shown in JSP 1 serves as an entry point where the
customer starts the payment process.

The customer initiates the payment process for 6 Euro and is being redirected to a
second page (JSP 2). On this page, the authorization by mobilepay is begun in the
background. The platform will send the authorization SMS to the customer containing
a description of the service ordered and a request to validate the payment by replying
to the message just received.

<html>
 <head>
 <title>SMS Billing Test</title>
 </head>
 <body >
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>

 Please enter your mobile subscriber number below to pay 6 Euro.

 <form method="GET" action="validate.jsp">
 <input name="msisdn" type="text" />
 <input type="submit" value="Bezahlen" />
 </form>
 </td>
 </tr>
 </table>
 </body>
</html>

JSP 1 index.jsp

page 22/73

After the validation phase the subscriber will be forwarded to a third page (JSP 3). On
this page, the actual debiting will be performed. In case the subscriber has already
validated the transaction and the debiting is successful, the content paid for will be
displayed. If the transaction has not been validated yet, debiting is tried again every
two seconds for ten times.

<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%@ page import="de.4Pay.client.mobilepay.SmsPaymentClient" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");
 String msisdn = request.getParameter("msisdn");
 String text = "";
 String refresh = "";
 String txid = "";

 try {
 SmsPaymentClient smsp = new SmsPaymentClient(url,service,pw);
 txid = smsp.authorize(msisdn, 600, false);
 text = "Next you will receive an SMS."
 + "Please confirm this payment by replying via SMS";
 refresh = "<meta http-equiv=\"refresh\" content=\"2; URL=./content.jsp?txid="
 + txid + "&retry=10\" />";
 } catch (MobilePaymentException e) {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 } catch (TechnicalProblemException e1) {
 text = "The payment could not be made due to technical issues";
 }
%>
<html>
 <head>
 <title>SMS Billing Test</title>
<%
 out.println(refresh);
%>
 </head>
 <body>
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>
<%
 out.println(text);
%>
 </td>
 </tr>
 </table>
 </body>
</html>

JSP 2 validate.jsp

page 23/73

4.1.1.4 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=smsauthorize&servicename=My
Service&password=MyPassword&msisdn=4917112345678&callbackurl=http://www.myserver
.com/callback.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true

<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%@ page import="de.4Pay.client.mobilepay.SmsPaymentClient" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");
 String txid = request.getParameter("txid");
 String text = "";
 String refresh = "";
 int I = new Integer(request.getParameter("retry")).intValue();

 try {
 SmsPaymentClient smsp = new SmsPaymentClient(url, service, pw, 10, 2000);
 smsp.bill(txid);
 text = "";
 } catch (MobilePaymentException e) {
 if (e.getStatusCode().equals("410")) {
 if (i > 0) {
 i--;
 text = "The payment has not been authorised yet. Trying again in 2 seconds."
 + i + " tries left.";
 refresh = "<meta http-equiv=\"refresh\" content=\"2; URL=./content.jsp?"
 + txid=" + txid + "&retry=" + I +"\" />";
 } else {
 text = "You have not confirmed the payment yet.";
 }
 } else {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 }
 } catch (TechnicalProblemException e1) {
 text = ""The payment could not be made due to technical issues.";
 }
%>
<html>
 <head>
 <title>Web Billing Test</title>
<%
 out.println(refresh);
%>
 </head>
 <body>
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>
<%
 out.println(text);
%>
 </td>
 </tr>
 </table>
 </body>
</html>

JSP 3 content.jsp

page 24/73

4.1.2 Web Authorization

Web Billing is a method based on the customer entering a PIN code on a website to
validate the payment. That PIN will be sent to her by SMS after the authorization
process has been started.

There are two different flows to validate the PIN, depending on the service and mobile
network operator:

- with a redirect to a web site of a MNO or

- without redirect, on a web site of the contracting party

If the webauthorize response contains an URL, the redirect flow must be used.

4.1.2.1 Web Authorization process without redirect

 Web Billing

End Customer Application Server
merlix mobilepay

Server

request for content for MSISDN

webauthorise

txid

SMS transmission: one-time PIN

entering one-tIme PIN into webformular

webvalidatepin

checking if PIN is OK

sending content

bill

billing status

refund

refunding status

For each billing process, one

refunding is possible.

For multiple billing more than one

call possible.

authorisation formular for PIN input

Figure 3 Process: Web Billing

page 25/73

This process is illustrated in Figure 3. First, the customer requests a service. Hereon,
the contracting party executes a call to mobilepay (webauthorize) in order to initiate
the authorization process. Afterwards, an SMS containing the PIN code is sent to the
subscriber. She then is required to validate the payment by entering the PIN in a form
on a webpage belonging to the contracting party. Afterwards, the contracting party
needs to send this value to the mobilepay system using the (webpinvalidate) command
to finish the validation step. The mobilepay system will confirm the successful
validation and the contracting party may affect the debiting after having rendered the
service requested.

For some services, the customer is redirected to webpage belonging to mobile network
operators

4.1.2.2 Web Authorization process with redirect

This process for Web Billing will be based on a redirect (HTTP 302) of the customer.
The customer will be redirected to a validation page hosted by the operator to validate
the payment. After successful or unsuccessful validation the customer will be
redirected to the contracting party’s okurl, respectively errorurl. In this process, no PIN-
SMS is sent and therefore no webvalidatepin request has to be executed by the
contracting party.

Figure 4 Process: Web Billing with redirect

page 26/73

4.1.2.3 Authorization Request

The parameters required for the HTTP request starting the authorization are listed in
Table 4. The parameters contained in the HTTP response sent by mobilepay can be
seen from Table 5.

Parameter Description

command webauthorize

servicename The name of the billing service to use for the payment
transaction It will be chosen by 4Pay and communicated to the
contracting party.

password The password belonging to the billing service. It will be chosen
by 4Pay and communicated to the contracting party.

amount The gross amount the customer is billed. The amount has to
be given in the smallest possible unit of currency. The currency
used is set to a fixed value on a per-service basis. For
instance, 300 (Cent) needs to be sent for invoicing a customer
3 Euro.

type The type of billing to perform (see chapter 2.2)

Values available: {single, multiple, cumulative}

When using single billing, exactly one debiting may take place
per authorised transaction. Multiple billings, on the other hand,
allow for several debits in a single transaction. Cumulative
billings enable increasing the amount repeatedly before the
debiting is affected.

msisdn The MSISDN to bill

okurl The URL to call using an HTTP 302 request after successful
validation of the customer on the operator validation page.
Must be set.

errorurl The URL to call using an HTTP 302 request after unsuccessful
validation of the customer on the operator validation page.
Must be set.

mccmnc Mobile Country Code (MCC) and Mobile Network Code (MNC)
of the mobile network operator, if known

Format: nnn-nn or nnnnn, e.g. 262-01 or 26201 for Telekom
(262=MCC, 01=MNC).

stopsubcallbackurl The URL to call using an HTTP request after a subscription
has been terminated. That request contains the transaction's
ID (txid) and the service's name (servicename) as POST
parameters (see chapter 2.2.2). Only used for subscriptions.

txt1, txt2, txt3 Texts used to substitute the variables in the confirmation SMS
to send (see chapter 4.8).

page 27/73

Parameter Description

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 4 Request: Web Authorize

Parameter Description

statuscode A numerical code indicating the status of the request's result
(see chapter 5)

statustext A text describing the status code in text form (see chapter 5)

txid A unique ID identifying the transaction. It is being generated
automatically by mobilepay for each transaction.

url If the parameter is available in the response, then the new
process with redirect must be used (see chapter 4.1.2.2). If the
parameter is missing, the previous process without redirect must
be used (see chapter 4.1.2.1)

bookingmessag
e

Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to
true in the initial request.

provider Name of the provider used for authorization.

This parameter will be returned only if detail had been set to
true in the initial request.

mcc Mobile Country Code of the provider used for authorization.

This parameter will be returned only if detail had been set to
true in the initial request.

mnc Mobile Network Code of the provider used for authorization.

This parameter will be returned only if detail had been set to
true in the initial request.

mtid ID of the confirmation SMS sent.

This parameter will be returned only if detail had been set to
true in the initial request.

Table 5 Response: Web Authorize

4.1.2.4 PIN Validation

The parameters required for the HTTP request used for PIN validation are listed in
Table 7. The parameters contained in the HTTP response sent by mobilepay can be
seen from Table 8.

page 28/73

Parameter Description

command webvalidatepin

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

password The password belonging to the billing service. It will be chosen by
4Pay and communicated to the contracting party.

txid A unique ID identifying the transaction. It is being generated
automatically by mobilepay for each transaction.

pin A one-time PIN sent to the customer by SMS after the
authorization process has been started.

txt1, txt2, txt3 Texts used to substitute the variables in the confirmation SMS to
send (see chapter 4.8).

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 6 Request: Web Validate PIN

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5)

statustext A text describing the status code in text form (see chapter 5)

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 7 Response: Web Validate PIN

4.1.2.5 Example: Web Billing

This example demonstrates how Web Billing may be used if the customer places an
order using a website. The page shown in JSP 4 serves as an entry point where the
customer starts the payment process.

page 29/73

The customer starts the payment process for 6 Euro and is being forwarded to a
second page (JSP 5) where the authorization process is being started. Working in the
background mobilepay will send the message containing the PIN code to the customer.
This code then needs to be entered by the customer into the form on the page to finish
validation of the payment transaction.

<html>
 <head>
 <title>Web Billing Test</title>
 </head>
 <body>
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>

 Please enter your mobile subscriber number below to pay 6 Euro.

 <form method="GET" action="pin.jsp">
 <input name="msisdn" type="text" value="491724565046"/>
 <input type="submit" value="Pay" />
 </form>
 </td>
 </tr>
 </table>
 </body>
</html>

JSP 4 index.jsp

page 30/73

On a third page (JSP 6) the actual check of the PIN entered is being performed. If this
is done successfully, the customer is forwarded again.

<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%@ page import="de.4Pay.client.mobilepay.WebPaymentClient" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");
 String msisdn = request.getParameter("msisdn");
 String text = "";
 String txid = "";

 try {
 WebPaymentClient webp = new WebPaymentClient(url, service, pw);
 txid = webp.authorize(msisdn, 600, false);
 text = "Next you will receive an SMS containing a PIN code.
"
 + "Please enter that PIN code below:
"
 + "<form method=\"GET\" action=\"status.jsp\"> "
 + "<input name=\"pin\" type=\"text\"/>"
 + "<input name=\"txid\" type=\"hidden\" value=\"" + txid + "\"/>"
 + "<input type=\"submit\" value=\"Send\"/></form>";
 } catch (MobilePaymentException e) {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 } catch (TechnicalProblemException e1) {
 text = "The payment could not be made due to technical issues.";
 }

%>
<html>
 <head>
 <title>Web Billing Test</title>
 </head>
 <body>
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>
<%
 out.println(text);
%>
 </td>
 </tr>
 </table>
 </body>
</html>

JSP 5 pin.jsp

page 31/73

JSP 6 status.jsp

On a fourth page (JSP 7) the debiting will be performed and the customer is shown the
status of her order or the ordered content is displayed.

<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%@ page import="de.4Pay.client.mobilepay.WebPaymentClient" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");
 String txid = request.getParameter("txid");
 String pin = request.getParameter("pin");
 String text = "";

 try {
 WebPaymentClient webp = new WebPaymentClient(url, service, pw);
 webp.validatePin(txid, pin);
 text="This way to the content.";
 } catch (MobilePaymentException e) {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 } catch (TechnicalProblemException e1) {
 text = "The payment could not be made due to technical issues.";
 }
%>
<html>
 <head>
 <title>Web Billing Test</title>
 </head>
 <body>
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>

<%
 out.println(text);
%>
 </td>
 </tr>
 </table>
 </body>
</html>

page 32/73

4.1.2.6 Example HTTPS Requests

https://www.mobilepay.de/mobilepay/mobilepay?command=webauthorize&servicename=My
Service&password=MyPassword&msisdn=4917112345678&callbackurl=http://www.myserver
.com/callback.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true

https://www.mobilepay.de/mobilepay/mobilepay?command=webvalidatepin&servicename=M
yService&password=MyPassword&txid=42c0cda8001dc6e6010021b8b1cf0091&pin=321554
&detail=true

4.1.3 Mobile Billing Authorization

Mobile Billling authorization differs noticeably from the three previous authorization
variants. The process is illustrated in Figure 5.

<%@ page import="de.4Pay.client.mobilepay.WebPaymentClient" %>
<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");

 String txid = request.getParameter("txid");
 String text = "";

 try {
 WebPaymentClient webp = new WebPaymentClient(url, service, pw);
 webp.bill(txid);
 text = "";
 } catch (MobilePaymentException e) {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 } catch (TechnicalProblemException e1) {
 text = "The payment could not be made due to technical issues.";
 }
%>
<html>
 <head>
 <title>Web Billing Test</title>
 </head>
 <body>
 <table border="1" cellspacing="0" cellpadding="5" align="center">
 <tr>
 <td>
<%
 out.println(text);
%>
 </td>
 </tr>
 </table>
 </body>
</html>

JSP 7 content.jsp

page 33/73

The payment transaction is started by the contracting party using an HTTP request like
it is done with the other billing variants (wapauthorize). Directly afterwards, using the
HTTP Redirect mechanism the contracting party needs to forward the customer to a
special page belonging to mobilepay. The payment will then be initiated by mobilepay,
and the customer will be asked to confirm the transaction by clicking a hyperlink on
that page. After this is done, mobilepay will again forward the customer back to the

 WAP Billing

End Customer Application Server
merlix mobilepay

Server

request for content by MSISDN

wapauthorise

waiting page including TXID

mobile phone is forwarded to authorisation page via HTTP 302

authorisation of payment

requesting content

sending content

bill

billing status

forwarding via HTTP 302 to errorurl or okurl

TXID, redirectURL

request resolved via HTTP 302

HTTP 302 with redirectURL

refund

refunding status

For multiple billing more than one

call possible.

For each billing process, one

refunding is possible.

Figure 5 Process: Mobile Billing

page 34/73

contracting party's server, so the contracting party may render the service requested
and perform the debiting using the bill command.

4.1.3.1 Authorization Request

The parameters required for the HTTP request starting the authorization are listed in
Table 8. The parameters contained in the HTTP response sent by mobilepay can be
seen from Table 9.

Parameter Description

command wapauthorize

servicename The name of the billing service to use for the payment
transaction It will be chosen by 4Pay and communicated to the
contracting party.

password The password belonging to the billing service. It will be chosen
by 4Pay and communicated to the contracting party.

amount The gross amount the customer is billed. The amount has to be
given in the smallest possible unit of currency. The currency
used is set to a fixed value on a per-service basis. For instance,
300 (Cent) needs to be sent for invoicing a customer 3 Euro.

type The type of billing to perform (see chapter 2.2)

Values available: {single, multiple, cumulative}

When using single billing, exactly one debiting may take place
per authorised transaction. Multiple billings, on the other hand,
allow for several debits in a single transaction. Cumulative
billings enable increasing the amount repeatedly before the
debiting is affected.

msisdn The MSISDN to bill (optional)

mccmnc Mobile Country Code (MCC) and Mobile Network Code (MNC)
of the mobile network operator, if known

Format: nnn-nn or nnnnn, e.g. 262-01 or 26201 for Telekom
(262=MCC, 01=MNC).

okurl The URL to forward the customer to after successful validation
of the payment transaction.

errorurl The URL to forward the customer to if validating the payment
transaction failed. In case the customer did not confirm the
payment, the parameter nabyuser=1 will be appended to the
URL. If the validation failed due to technical reasons, this
parameter will not be present.

stopsubcallbackurl The URL to call using an HTTP request after a subscription has
been terminated. That request contains the transaction's ID
(txid) and the service's name (servicename) as POST
parameters (see chapter 2.2.2). Only used for subscriptions.

page 35/73

Parameter Description

txt1, txt2, txt3 Texts used to substitute the variables in the confirmation SMS
to send (see chapter 4.8).

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

description Must contain a verbose description of the provided service. The
value will be shown on the panel used for the user authorization.

gtc Must contain a link to the general terms and conditions of the
provided service. The link be shown on the panel used for the
user authorization.

imprint Must contain a link to the imprint of the provided service. The
link be shown on the panel used for the user authorization.

contact Must contain a link to the contacts of the provided service. The
link be shown on the panel used for the user authorization.

faq Must contain a link to the faq of the provided service. The link
be shown on the panel used for the user authorization.

Table 8 Request: WAP Authorize

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5)

statustext A text describing the status code in text form (see chapter 5)

txid A unique ID identifying the transaction. It is being generated
automatically by mobilepay for each transaction.

url The URL the contracting party needs to forward the customer to
for the purpose of performing authorization.

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

provider Name of the provider used for authorization.

This parameter will be returned only if detail had been set to true
in the initial request.

mcc Mobile Country Code of the provider used for authorization.

This parameter will be returned only if detail had been set to true
in the initial request.

page 36/73

Parameter Description

mnc Mobile Network Code of the provider used for authorization. This
parameter will be returned only if detail had been set to true in
the initial request.

mtid ID of the confirmation SMS sent.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 9 Response: WAP Authorize

4.1.3.2 Example: Mobile Billing

This example demonstrates how Mobile Billing may be implemented. It is assumed the
subscriber's MSISDN is already known. If this is not the case, the process explained
in chapter 7 may be used for determining it first. An example for a landing page for the
customer is given under JSP 8. After the customer has loaded this page, the
authorization process will be started in the background, and a new payment transaction
will be created. In addition, a redirection URL is generated that needs to be embedded
as a hyperlink in the page shown, so the customer may click it to begin the
authorization.

<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%@ page import="de.4Pay.client.mobilepay.WapPaymentClient" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");
 String txid = request.getParameter("txid");
 String text = "";

 try {
 WapPaymentClient wapp = new WapPaymentClient(url, service, pw);
 wapp.bill(txid);
 text = "This is your content.";
 } catch (MobilePaymentException e) {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 } catch (TechnicalProblemException e1) {
 text = "The payment could not be made due to technical issues.";
 }
%>
 <wml>
 <card id="test">
 <p>
<%
 System.out.println(text);
%>
 </p>
 </card>
</wml>

JSP 8 index.jsp

page 37/73

Once the customer has followed the link all further steps in the process happen
automatically and without any interaction by the contracting party. After the
authorization has finished successfully, the customer will be forwarded to the URL
passed as okurl. In this example, this is the page shown under JSP 9 where the debiting
is performed and the ordered content is delivered.

If authorization fails, the customer will be forwarded to the URL passed as value of the
parameter errorurl. In this example that would be the page displayed as JSP 10. On
this page she will be informed about the transaction's failure.

4.1.3.3 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=wapauthorize&servicename=My
Service&password=MyPassword&msisdn=4917112345678&amount=300&okurl=http://www.
myserver.com/ok.php&errorurl=http://www.myserver.com/error.php&amount=300&type=singl
e&txt1=&txt2=txt2&txt3=txt3&detail=true

<%@ page import="de.4Pay.client.mobilepay.TechnicalProblemException" %>
<%@ page import="de.4Pay.client.mobilepay.MobilePaymentException" %>
<%@ page import="de.4Pay.client.mobilepay.WapPaymentClient" %>
<%
 String url = application.getInitParameter("PaymentServer");
 String service = application.getInitParameter("Service");
 String pw = application.getInitParameter("Password");
 String txid = request.getParameter("txid");
 String text = "";

 try {
 WapPaymentClient wapp = new WapPaymentClient(url, service, pw);
 wapp.bill(txid);
 text = "This is your content.";
 } catch (MobilePaymentException e) {
 text = "Unfortunately the payment could not be made: " + e.getStatusText();
 } catch (TechnicalProblemException e1) {
 text = "The payment could not be made due to technical issues.";
 }
%>
 <wml>
 <card id="test">
 <p>
<%
 System.out.println(text);
%>
 </p>
 </card>
</wml>

<wml>
 <card id="test">
 <p>You have not authorised the payment, yet.</p>
 </card>
</wml>

JSP 10 error.jsp

JSP 9 ok.jsp

https://www.mobilepay.de/mobilepay/mobilepay?command=wapauthorize&servicename=MyService&password=MyPassword&msisdn=4917112345678&amount=300&okurl=http://www.myserver.com/ok.php&errorurl=http://www.myserver.com/error.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=wapauthorize&servicename=MyService&password=MyPassword&msisdn=4917112345678&amount=300&okurl=http://www.myserver.com/ok.php&errorurl=http://www.myserver.com/error.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=wapauthorize&servicename=MyService&password=MyPassword&msisdn=4917112345678&amount=300&okurl=http://www.myserver.com/ok.php&errorurl=http://www.myserver.com/error.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=wapauthorize&servicename=MyService&password=MyPassword&msisdn=4917112345678&amount=300&okurl=http://www.myserver.com/ok.php&errorurl=http://www.myserver.com/error.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=wapauthorize&servicename=MyService&password=MyPassword&msisdn=4917112345678&amount=300&okurl=http://www.myserver.com/ok.php&errorurl=http://www.myserver.com/error.php&amount=300&type=single&txt1=&txt2=txt2&txt3=txt3&detail=true

page 38/73

4.2 Billing Request

The billing request serves to affect the actual debiting of the amount to pay after the
authorization’s successful completion.

The parameters required for the HTTP request are listed in Table 10. Table 11 lists the
parameters contained in the response by mobilepay.

Parameter Description

command bill

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

password The password belonging to the billing service. It will be chosen
by 4Pay and communicated to the contracting party.

txid A unique ID identifying the transaction. It is generated
automatically by mobilepay for each transaction.

amount The gross amount the customer is billed. The amount has to be
given in the smallest possible unit of currency. The currency used
is set to a fixed value on a per-service basis. For instance, 300
(Cent) needs to be sent for invoicing a customer 3 Euro.

This parameter is optional. If it is not given, the amount specified
at authorization is used. If a value is given, it must be equal or
less the amount used for authorization.

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 10 Request: Bill

Parameter Description

statuscode A numerical code indicating the status of the request's result
(see chapter 5)

statustext A text describing the status code in text form (see chapter 5)

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to
true in the initial request.

Additional Parameter for Mobile Billing

msisdn The MSISDN of the customer.

page 39/73

This parameter will be returned only if detail had been set to
true in the initial request.

mcc Mobile Country Code of the provider used for authorization.

This parameter will be returned only if detail had been set to
true in the initial request.

mnc Mobile Network Code of the provider used for authorization.

This parameter will be returned only if detail had been set to
true in the initial request.

Table 11 Response: Bill

4.2.1 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=bill&servicename=MyService&pa
ssword=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&detail=true

4.3 Bulk Billing

Apart from the direct and synchronous execution of the debiting using the bill command
in a payment transaction, another option exists. It consists of performing up to 500
debits simultaneously in an asynchronous fashion. As a prerequisite for using this
mechanism all of the transactions to be billed need to be authorized already since
debiting would fail otherwise.

Hence, the typical scenario for using this mechanism is debiting a larger number of
subscription transactions where billings are performed on a regular basis. From a
technical point of view the contracting party will first request a bulk billing by calling the
appropriate command and supplying a list of TXIDs indicating the transactions to be
billed. The mobilepay system will process this request and perform a callback request
after completion containing the execution's results.

4.3.1 Billing Request

The request used for employing bulk billing follows the syntax established by the
commands already described. The parameters required for the HTTP request are listed
in Table 12. The parameters contained in the HTTP response sent by mobilepay can
be seen from Table 13.

Parameter Description

command billbulk

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

password The password belonging to the billing service. It will be chosen by
4Pay and communicated to the contracting party.

page 40/73

Parameter Description

txidlist The list of Ids denoting the transactions to be billed. The individual
TXIDs need to be separated by the character ';'. A single bulk
billing request may contain up to 500 transactions.

amount The gross amount the customer is billed. The amount has to be
given in the smallest possible unit of currency. The currency used
is set to a fixed value on a per-service basis. For instance, 300
(Cent) needs to be sent for invoicing a customer 3 Euro.

This parameter is optional. If it is not given, the amount specified
at authorization is used. If a value is given, it must be equal or
less the amount used for authorization.

bulkuid An ID serving as a unique key to the bulk. It is used to avoid
executing a single bulk multiple times. If a second bulk is
transmitted using the same ID, it will be rejected. The ID may be
chosen as an arbitrary string with a length of up to 32 characters.

callbackurl The URL to call using an HTTP request after authorization
finished successfully. That request contains the transaction's ID
(txid) and the service's name (servicename).

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 12 Request Bill Bulk

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5)

statustext A text describing the status code in text form (see chapter 5)

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 13 Response Bill Bulk

4.3.1.1 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=billbulk&servicename=MyService
&password=MyPassword&txidlist=42c0cda8001dc6e6010021bfb1cd2091;42c0cda8001dc6e
6010021bfb1cd3653;42c0cda8001dc6e6010021bfb1cd477a&amount=199&bulkuid=myUniq
ueBulkId4711&callbackurl=http://www.myserver.com/billbulk.php&detail=true

page 41/73

4.3.2 Callback Request

After the bulk has been fully processed, mobilepay executes a callback request for the
URL passed in the request initiating the bulk. This request serves to return the bulk
execution's results. The parameters contained in this HTTP request are listed in Table

14. The contracting party's system is required to acknowledge having received the
results by replying with a request of its own. That one is described in Table 15.

Parameter Description

txidlist The list of TXIDs processed in the bulk. ID are separated from
one another by the character ';'.

resultlist The results of the bulk's processing. These are ordered in the
same way as the TXIDs and separated by the character ';'. Each
result may either have the value true or false indicating whether
the billing succeeded or failed respectively.

resultmessagelist A list of messages detailing the bulk processing's results. These
are ordered the same as the TXIDs and separated by the
character ';'.

Table 14 Request: Bill Bulk Callback

Parameter Description

 After having received the callback request, an acknowledgement
by sending another request to mobilepay is required. Its body
needs to contain the string OK or else mobilepay will retry
transmitting the results until receiving the acknowledgement.

Table 15 Response: Bill Bulk Callback

4.3.3 Java Client

The Java-based client provided by 4Pay implements the usage of bulk billing. To this
end, the concrete classes derived from AbstractMobilePaymentClient each contain the
two methods:

doBillBulk(List<String>, String, String, Long)

and

doBillBulk(List<String>, String, String)

Both expect a list of transactions to be billed as their first parameter. Keep in mind that
prior authorization for each of them is required or else executing the billing will fail. The
second parameter passed is the callback URL used to report the results of the bulk's
execution to. The bulk ID is passed as the third parameter. Furthermore, using the four
parameter method it is possible to specify the amount of money to be debited if the
user wishes to perform a billing for an amount different from the one initially authorised

page 42/73

(only amounts equal or less to the one authorised are allowed). The method's second
variant which only takes three parameters omits this feature and instead will debit the
amount of money given in the authorization.

For handling the callback request, the client contains a special servlet that may be
used. It is, however, necessary to enable usage of this servlet first by modifying the
configuration of the server utilised as shown in XML 3.

The parameter BulkResponseProcessor specifies the class used to handle processing
of the callback request’s data. This class is required to implement the interface
BulkResponseProcessor. In case the data cannot be processed the method process()
is required to throw a ResponseNotStoredException. In this case, the mobilepay server
will resend the callback. An example for a processor implementation printing the results
to console is shown under Code 2.

<context-param>
 <param-name>CallBack</param-name>
 <param-value>http://localhost:8080/example/bulkresult</param-value>
</context-param>
<context-param>
 <param-name>BulkResponseProcessor</param-name>
 <param-value>
 de.4Pay.client.mobilepay.ExampleBulkResponseProcessor
 </param-value>
</context-param>
<servlet>
 <servlet-name>bulkresponseprocessor</servlet-name>
 <servlet-class>
 de.4Pay.client.mobilepay.BulkResponseReceiver
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>bulkresponseprocessor</servlet-name>
 <url-pattern>/bulkresult</url-pattern>
</servlet-mapping>

package de.4Pay.client.mobilepay;

import java.util.List;

public class ExampleBulkResponseProcessor implements BulkResponseProcessor {

 public void process(List results) throws ResponseNotStoredException {

 for (int i = 0; I < results.size(); i++) {
 BulkResult result = (BulkResult) results.get(i);
 System.out.println(result.getTxid() + ":"
 + result.getResult() + ":" + result.getResultmessage());
 }

 }
}

XML 3 web.xml

Code 2 Example: processing the callback request

page 43/73

4.4 Refunding

The refunding mechanism serves to undo a prior billing request and credit the amount
of money to the customer.

Take note that several restrictions apply to this operation. Basically, it may only be used
after at least one debiting has been performed. Each debiting may only be refunded
exactly once. In addition, only the last debiting performed in a transaction may be
refunded. This restriction mainly concerns subscriptions since it will always only be
possible to refund the last one in a series of debits.

It is, however, possible to perform another debiting after having refunded a previous
one. This new debiting may itself be refunded again although mobile network operators
are known that do not support repeated debiting and refunding.

The parameters required for the HTTP request are listed in Table 16. Table 17 lists the
parameters contained in the response by mobilepay.

Parameter Description

command refund

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

password The password belonging to the billing service. It will be chosen by
4Pay and communicated to the contracting party.

txid A unique ID identifying the transaction. It is generated
automatically by mobilepay for each transaction.

amount The gross amount credited to the customer. The amount has to
be given in the smallest possible unit of currency. The currency
used is set to a fixed value on a per-service basis. For instance
300 (Cent) needs to be transferred for invoicing a customer 3
Euro.

This parameter is optional. If it is not given, the amount specified
at authorization or billing (if given) is used. If a value is given, it
must be equals or less the amount used for authorization.

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 16 Request: Refund

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5)

page 44/73

Parameter Description

statustext A text describing the status code in text form (see chapter 5)

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 17 Response: Refund

4.4.1 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=refund&servicename=MyService
&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&detail=true

4.5 Increasing the Amount

If a cumulative payment transaction has been authorised, it is possible to increase the
amount to pay repeatedly before performing the actual debiting. For this purpose, the
Increase Amount command exists. It may only be used if the transaction's type is set
to cumulative (see chapter 2.2.3). As an additional restriction, cumulative billing is
currently only supported for Telekom customers. For a transaction supporting the
mechanism the command may be called repeatedly each time increasing the amount
to bill by the amount given. Increasing may only be done as long as the bill command
has not been executed yet. As soon as the debiting is executed, no further increases
are possible and the transaction will be considered finished.

The parameters required for the HTTP request are listed in Table 18. Table 19 lists the
parameters contained in the response by mobilepay.

Parameter Description

command increaseamount

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

password The password belonging to the billing service. It will be chosen by
4Pay and communicated to the contracting party.

txid A unique ID identifying the transaction. It is generated
automatically by mobilepay for each transaction.

amount The gross amount to increase the amount the customer is
invoiced by.

The amount has to be given in the smallest possible unit of
currency. The currency used is set to a fixed value on a per-
service basis. For instance 300 (Cent) needs to be transferred for
increasing the amount by 3 Euro.

page 45/73

Parameter Description

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 18 Request: Increase Amount

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5)

statustext A text describing the status code in text form (see chapter 5)

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 19 Response: Increase Amount

4.5.1 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=increaseamount&servicename=
MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&amount=1
99&detail=true

4.6 Stopping a Subscription

Using the interface of mobilepay the contracting party may terminate existing
subscription transactions (see chapter 2.2.2). Executing this command results in the
transaction being closed and no more billings being possible. Furthermore, an HTTP
callback will be executed to the URL provided at authorization.

The parameters required for the HTTP request are listed in Table 20. Table 21 lists the
parameters contained in the response by mobilepay.

Parameter Description

command stopsubscription

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

https://www.mobilepay.de/mobilepay/mobilepay?command=increaseamount&servicename=MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&amount=199&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=increaseamount&servicename=MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&amount=199&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=increaseamount&servicename=MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&amount=199&detail=true

page 46/73

Parameter Description

password The password belonging to the billing service. It will be chosen by
4Pay and communicated to the contracting party.

txid A unique ID identifying the transaction. It is generated
automatically by mobilepay for each transaction.

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 20 Request: Stop Subscription

Parameter Description

statuscode A numerical code indicating the status of the request's result (see
chapter 5)

statustext A text describing the status code in text form (see chapter 5)

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 21 Response: Stop Subscription

4.6.1 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=stopsubscription&servicename=
MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&detail=tru
e

4.7 Looking Up the Mobile Network Operator

The mobilepay interface provides means for querying for the mobile network operator
used in a previous authorization.

The parameters required for the HTTP request are listed in Table 22. Table 23 lists the
parameters contained in the response by mobilepay.

Parameter Description

command getmno

page 47/73

Parameter Description

servicename The name of the billing service to use for the payment transaction
It will be chosen by 4Pay and communicated to the contracting
party.

password The password belonging to the billing service. It will be chosen by
4Pay and communicated to the contracting party.

txid A unique ID identifying the transaction. It is generated
automatically by mobilepay for each transaction.

detail Setting this optional parameter to true enables more verbose
results (e.g. the parameter bookingsmessage) returned in the
request's direct response.

Values available: {true, false}

Table 22 Request: Get MNO

Parameter Description

statuscode 600

statustext The mobile network operator (MNO) used for authorization

bookingmessage Additional information (e.g. error message directly from the
network operators) describing the result in greater detail.

This parameter will be returned only if detail had been set to true
in the initial request.

Table 23 Response: Get MNO

4.7.1 Example HTTPS Request

https://www.mobilepay.de/mobilepay/mobilepay?command=getmno&servicename=MyServic
e&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&detail=true

4.8 Customizing the Message Texts

For all text messages sent by 4Pay on behalf of the contracting party the possibility for
customization exists. The texts sent will be configured by 4Pay for each service
individually on the mobilepay system. They may, however, contain wild cards that will
be replaced dynamically by values passed as HTTP request parameters. The texts can
be provided by the contracting party. Please note that these may be subject to
regulatory rules that need to be respected.

The message texts themselves cannot only be configured on a per service basis but
also per billing variant (see chapter 2.1) and type (see chapter 2.2). Additional
configurable texts exist for a monthly message to the customer informing her about the

https://www.mobilepay.de/mobilepay/mobilepay?command=getmno&servicename=MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&detail=true
https://www.mobilepay.de/mobilepay/mobilepay?command=getmno&servicename=MyService&password=MyPassword&txid=42c0cda8001dc6e6010021bfb1cd2091&detail=true

page 48/73

amount of money spent for that period and warning messages triggered by having
spent certain amounts of money (bill warnings).

4.8.1 Wild Cards

Table 24 lists all wild cards available and their respective descriptions. The texts
configured may contain these wild cards which will be replaced according to their
descriptions.

Wild card Description

%t1 Will be replaced by request parameter txt1.

%t2 Will be replaced by request parameter txt1.

%t3 Will be replaced by request parameter txt1.

%a The amount in cent. Will be replaced by the request parameter
amount.

%c The amount in Euro. Will be replaced by the request parameter
amount.

%p The PIN used in Web Billing. Will be replaced by the request
parameter pin (see chapter 4.1.2.4).

Table 24 SMS Text Wildcards

4.8.2 Order of Wild Cards

Replacing the wild cards is done in a specific order. This opens up the possibility of
passing values for wild cards which in turn may again contain wildcards. First, the wild
cards %t1, %t2 and %t3 will be replaced in that order. Second, the wild cards %a
and %c will be replaced. Finally, when using the webvalidatepin command (see chapter
4.1.2.4), %p will be replaced.

Making use of this order it would for instance be possible to pass the wild cards %a
or %c in one of the request parameters %tx1-%tx3 and still have them replaced
correctly in the messages sent.

page 49/73

5 Status Codes

The status codes returned by mobilepay are listed in Table 25.

Code Descriptions

100 OK.

200 Technical error.

300 Billing for this MSISDN not available.

305 Increase amount not possible

310 Not authorized.

320 Service not available.

330 Txid not valid.

340 PIN not valid.

350 MSISDN not valid.

351 Request formally OK. MCCMNC invalid.

355 Transaction not found.

360 Refund not possible.

370 Amount too high

380 Txid does not match service

390 Service not available.

391 No credit

392 Cumulative billing not allowed for this service

393 Service is disabled

394 Billing variant unavailable

395 Billing type unavailable

400 Amount already billed.

405 Increase amount not allowed for Transaction

410 Transaction was not validated.

411 Transaction already validated

420 A transaction is still pending. Cannot start another transaction.

430 Amount not yet billed. Refund not possible.

440 Subscription was already stopped. Cannot stop again.

441 Transaction was already aborted

450 Monthly limit exceeded. No more billings possible in this month.

page 50/73

Code Descriptions

455 MSISDN blacklisted.

460 BulkUid already used. Choose another BulkUid.

470 BulkUid missing.

480 TXID list missing.

481 TXID list in wrong format. Expected as string separated by ';'.

482 TXID list too long. Send a maximum of 500 TXIDs.

490 Callback-URL missing.

491 Request parameter missing or invalid value

492 Command not found

600 MNO, über den die Zahlung autorisiert wurde.

Table 25 Status Codes

page 51/73

6 Country Specifics

Unfortunately, it is not possible to completely unify the behaviour of the mobilepay
system for all connections. The reason for this is differences in the connections
employed in each country that cannot be levelled. Chapter 2 describes the processes
for Germany.

page 52/73

7 MSISDN Lookup for Mobile Billing

Since knowing the MSISDN of a subscriber is a prerequisite for performing Mobile
Billing, the mobile network operators provide means for determining it if it is not yet
known. Using this functionality is, however, different for each operator. Thus, mobilepay
provides a unified mechanism usable by the contracting party for identifying the
customer's MSISDN.

From a technical point of view determination of the MSISDN is based on using multiple
HTTP redirects. That process is shown in Figure 6. First, the customer requests a
service at the contracting party and then receives an HTTP redirect forwarding her to
a page belonging to mobilepay. The mobilepay system is then able to determine the
mobile subscriber's MSISDN. This will be done in the background while the customer
is transparently redirected back to the contracting party's system. After the MSISDN
lookup finished, the MSISDN may be obtained from mobilepay by the contracting party
by querying the MSISDN interface using a simple HTTP request.

 MSISDN Lookup

End Customer Application Server merlix MSISDN Service

request for content by MSISDN

HTTP 302 including redirect URL (phase II)

accessing MSISDN

MSISDN

request via HTTP 302

HTTP 302 including redirect URL (phase I)

request via HTTP 302

sending content

Figure 6 Process: MSISDN Lookup

page 53/73

.

7.1 Determining the MSISDN

As initially described, the mobile subscriber is forwarded repeatedly using HTTP
redirects for identifying her MSISDN. Thus, the determination process consists of
several phases that are described in the following sections.

For Deutsche Telekom (t-mobile) there is a different process: If the redirect in Phase II
provides OK for StatusInfo and t-mobile for Provider (see also Table 26), the process
described in 7.1.3 will not return any value for Result, hence this step can be skipped
for Deutsche Telekom and no MSISDN will be provided during this step.
Consequentially, the command wapauthorize is done without parameter MSISDN for
Deutsche Telekom. In other words: you can always call wapauthorize directly, without
msisdn, and 4Pay will resolve the msisdn during the whole transaction.

Nonetheless, the MSISDN will be returned after a successful bill request (Table 11

Response: Bill).

7.1.1 Phase I

The URL redirected to is required to contain the parameters listed in Table 26. In
addition, an arbitrary number of custom parameters may be passed which will be
returned by mobilepay in phase II.

Parameter Description

ID The name identifying the account to use for determining the
subscriber's MSIDN

PASS The password belonging to the account

Table 26 Parameters: Redirect Phase I

The URL to redirect the customer to is as follows:

http://wap.mobilepay.de/msisdnservice/getmsisdn

7.1.2 Phase II

The redirection used in phase II contains the parameters listed in Table 27 in addition
to the ones from phase I.

page 54/73

Parameter Description

StatusInfo Indicates whether or not looking up the MSISDN was successful.

FAILED: MSISDN could not be determined. In this case the
parameter Status will contain further details.

OK: MSISDN successfully determined

MSISDNID An ID that may be used to retrieve the MSISDN after the lookup
process has finished. Only usable once.

PROVIDER The subscriber's mobile network operator (vodafone, t-mobile,
O2)

STATUS Extended information in case MSISDN lookup has failed

Table 27 Parameters: Redirect Phase II

7.1.3 Querying for the MSISDN

After successful completion of the lookup process, the subscriber's MSISDN may be
obtained from mobilepay. The parameters required for this request are listed in Table

28. Querying is done by calling the following URL using an HTTP or HTTPS request:

http://wap.mobilepay.de/msisdnservice/msisdnproxy

Parameter Description

ID The ID identifying the customer on whose behalf the MSISDN is
determined

PASS The password for accessing the system from phase I

MSISDNID The MSISDN-ID returned in phase II

Result The MSISDN as text in the format:

 +<CC><NETWORK><SUBSCRIBER>

Table 28 Parameters: Request MSISDN

7.2 Code Example

An example for using the MSISDN lookup mechanism provided by mobilepay is given
in XML 4 Example: MSISDN Lookup. First, this Java servlet redirects the mobile
subscriber to a special page belonging to mobilepay used for lookup of the MSISDN.
Afterwards, the subscriber's MSISDN will be obtained from the mobilepay server and
can be used for performing Mobile Billing.

page 55/73

public class ExampleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response) throws
 IOException{
 …

 response.setHeader("Expires","Mon 26 Jul 1997 05:00:00 GMT");
 response.setHeader("Cache-Control","no-cache, must-revalidate");
 response.setHeader("Pragma","no-cache");
 String status = request.getParameter("STATUS");
 String msisdnid = request.getParameter("MSISDN");
 String msisdn = "FAILED";
 String provider = request.getParameter("PROVIDER");

 if (status == null) { // redirect to msisdn-interface for retrieval
 response.sendRedirect(
 "http://localhost/msisdnservice/getmsisdn?ID=service1&PASS=1234");
 } else if (status.equals("OK")){ // retrieval was successful get msisdn
 try {
 this.fetchMSISDNFromProxy(msisdnid);
 } catch (IOException ioe) {
 msisdn = "failed. "+ioe;
 }
 } else { // retrieval was not successful
 …

 }
 …

 }

 private String fetchMSISDNFromProxy(String msisdnid) throws IOException{
 HttpClient client = new HttpClient();

 PostMethod pm = new PostMethod();
 pm.setRequestHeader("Connection", "close");
 pm.addParameter("ID", "service1");
 pm.addParameter("PASS", "1234");
 pm.addParameter("MSISDNID", msisdnid);

 URI u = new URI("http://wap.mobilepay.de/msisdnservice/msisdnproxy", true);

 pm.setURI(u);

 int rc = (-1);

 rc = client.executeMethod(pm);

 if (rc == 200) {
 return pm.getResponseBodyAsString();
 } else {
 throw new IOException("fetching failed "+rc+" [" + pm.getStatusText() + "]");
 }
 }
}

XML 4 Example: MSISDN Lookup

4Pay Networks GmbH Geschäftsführer: Martin Kolisch Commerzbank Düsseldorf
Fischerstraße 49 HRB79650, Amtsgericht Düsseldorf IBAN DE91 3004 0000 0151 5154 00
D - 40477 Düsseldorf Steuernummer 103/5751/2620 BIC COBADEDDXXX

 Annex 1

Interface Description

Premium SMS and

SMS Termination

Version: 1.1

Date: 27.05.2017

page 57/73

Inhalt

Change History .. 59

1. Glossary .. 60

2. SMS .. 61

2.1. SMS via HTTP ... 61

2.1.1. SMS transmission (MT) ... 61

2.1.1.1. Service URL ... 61

2.1.1.2. HTTP Request Parameter ... 61

2.1.1.3. SMS MT Response Format ... 62

2.1.2. DLR - receiving .. 63

2.2. SMS via SMPP ... 64

2.2.1. Confirmation .. 64

2.2.1.1. SMPP account details ... 64

2.2.1.2. IP Access ... 65

2.2.2. Supported SMPP PDUs .. 65

2.2.3. Parameter Description ... 65

2.2.3.1. Source Adress / Destination Adress .. 65

2.2.3.2. Data Coding ... 65

2.2.3.3. MSISDN Format .. 65

2.2.3.4. Enquire link .. 66

2.2.4. Reason Codes ... 66

3. MMS.. 66

3.1. MMS transmission (MT) ... 66

3.1.1. Service URL ... 66

3.1.2. HTTP request parameter ... 67

3.1.3. MMS MT Response format .. 67

3.2. DLR - Receiving ... 68

3.3. MMS receiving (MO) .. 69

4. Number Lookup ... 71

4.1. Number Lookup via HTTP .. 71

4.1.1. Service - URL .. 71

4.1.2. HTTP Request Parameter ... 71

4.1.3. Number Lookup Response Format ... 71

4.1.4. Callback process ... 71

4.1.5. Callback error codes .. 72

4.2. Number Lookup via SMPP ... 72

4.3. Bulk Number Lookup via Mail ... 73

4.3.1. Mail Format .. 73

page 58/73

4.3.2. Mail response .. 73

page 59/73

Change History

Version Date Author Description

1.0 23.03.2017 Yusif Goabra Released version 1.0

1.1 29.05.2017 Martin Kolisch Added missing parameter for sms termination

1.1 28.06.2017 Christoph Berger Review and formatted

page 60/73

1. Glossary

Abbreviation Explanation

CSV Comma-separated values

DLR
Delivery Report. Provides (usually) asynchronous information about the status of the

message

E.164 ITU-T recommendation for the international public telecommunication numbering plan1

HLR
The home location register is a central database that contains details of each mobile

phone subscriber that is authorized to use the GSM core network.

Inbound See MO

Inbound Port See MO Port

ISO-8601

International Standard for the representation of dates and times
2

The used format used in this interface is: yyyy-

MM-dd'T'HH:mm:ss.SSSZ

where:

yyyy = four-digit year

MM = two-digit month (01=January, etc.) dd = two-digit day

of month (01 through 31) HH = two digits of hour (00

through 23) mm = two digits of minute (00 through 59) ss =

two digits of second (00 through 59) SSS = digits represent-

ing milliseconds

Z = time zone designator

Example: 2009-07-23T12:00:00.000+0200

MCC Mobile Country Code

MG Message Gateway

MNC Mobile Network Code

MO
Mobile Originated: A SMS message which is sent from a mobile end device to, for ex-

ample, the marketing. The equivalent of “Inbound”.

MO Port
Mobile phone number or short code to which the SMS messages can be sent and

which will be processed by a server. The equivalent of Inbound Port.

MSISDN
Mobile Subscriber Integrated Services Digital Network Number, a number identifying

a subscription in a mobile network.

MT
Mobile Terminated: A SMS message which, for example, is sent from the server to a

mobile end device. The equivalent of “Outbound”.

NL Number Lookup

Outbound See MT

Provider
Service provider which is hooked up to the marketing server and which delivers SMS

messages.

SMPP Short Message Peer-to-Peer protocol for exchanging SMS messages

SMTP Simple mail transfer protocol

UTC Coordinated universal time (time standard based on International Atomic Time)
3

page 61/73

2. SMS

2.1. SMS via HTTP

2.1.1. SMS transmission (MT)

2.1.1.1. Service URL
The MG receives SMS messages for the transmission under the following URL (POST):

http://<IPAddressMMG>/merlix/rest/sendsmsdlr

2.1.1.2. HTTP Request Parameter

The interface expects parameters according to the following chart. The parameters have to

be (exclusively) transmitted per POST. The block Use states if a parameter is optional (O)

or mandatory (M).

Name Use Meaning

login M Your login will be sent in a separated email

pin M Your pin will be sent in a separated email

service M Service name will be sent in a separated email

msg M
(Alternative to the parameter data) The content of the text

message. If this parameter is blank a space will be set.

udh O
The UDH for text or binary messages, e.g. multipart text

messages

data M
(Alternative to the parameter msg) The content of the binary

message with the format (UDH/ only for legacy purpose, use

udh parameter instead) CONTENT.

snr M The source identifier of the message.

dnr M
The receiver’s number of the message with the international

format beginning with 00, e.g. 00491701234567.

type M “text“ or “binary“

callbackurl O URL to which the DLRs have to be reported.

externaldata O

Identifier for the message which was given by the initiator

and which is included in the DLR reports; the setting of this

parameter is only sensible if the callbackurl is set, too.

Name Use Meaning

 sensible if the callbackurl is set, too.

Uuid O

ccuser O For further details, contact 4Pay

page 62/73

ccportal O For further details, contact 4Pay

cctimestamp O For further details, contact 4Pay

expiry O

Allows you to specify the validity period of the message. It

could be supplied in relative or absolute format:

-relative: “+10” means a validity period of ten minutes

-absolut: supplied as UTC in ISO-8601 Format (please see

Glossary)

2.1.1.3. SMS MT Response Format

Response Code Example http-Response Description

200

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_ACCEPTED</type>

<time>2008-09-

04T11:45:08.554+0200</time>

<message-id>987654321ABCD</message-id>

<external-data>1234567890</external-

data>

</message-event>

</message-events>

Message has been

accepted by the

SMSC.

202

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_BLACKLISTED</type>

<time>2008-09-

04T11:45:08.554+0200</time>

</message-event>

</message-events>

Message will not be

sent since it is on the

blacklist.

400

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_INVALID</type>

<time>2008-09-

04T11:45:08.554+0200</time>

</message-event>

</message-events>

Occurs if, for exam-

ple, the sender and

the receiver-address

cannot be parsed.

400

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_ACCEPTION_EXCEPTION</type>

<time>2008-09-

04T11:45:08.554+0200</time>

</message-event>

</message-events>

Further errors.

403

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_ACCEPTION_FORBIDDEN</type>

<time>2008-09-

04T11:45:08.554+0200</time>

Wrong login, pin or

service.

page 63/73

</message-event>

</message-events>

2.1.2. DLR - receiving
If a Callback-URL has been indicated during the transmission and if the SMS Gateway re-

ceived a DLR this DLR will be reported to the Callback-URL.

Therefore, the URL is called and meanwhile a XML document is delivered as the parameter

“data”. If a data for external data has been indicated during the transmission it will be reported

as well.

1. Example:
<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_DELIVERED_TO_PHONE</type>

<time>2008-09-04T11:45:08.554+0200</time>

<message-id>AB10000</message-id>

<external-data>A1231AF</external-data>

</message-

event>

</message-events>

<type> Description

MT_DELIVERED_TO_PHONE The message has been delivered to the end device.

MT_NOT_DELIVERED_TO_PHONE The message could not be delivered to the end device.

MT_DELIVERED_EXTERNAL
The SMS Gateway has delivered the message to an exter-

nal system in order to send it.

The receiving system (the DLR-report-receiver) has to give back a http-status code in

the range 2xx in order to confirm the receiving of the DLR. Other status codes lead to

new delivery-attempts until either a configured, maximum number of attempts is ex-

ceeded or alternatively a new delivery-attempt leads to a status code in the range 2xx.

In the case of “MT_NOT_DELIVERED_TO_PHONE” events it is possible to receive extended

information in the detail element of the supplied DLR.

2. Example:
<?xml version="1.0" encoding="UTF-8"?>

<message-events>

<message-event>

<type>MT_NOT_DELIVERED_TO_PHONE</type>

<time>2009-07-23T13:39:27.000+0200</time>

<message-id>5410016-551011</message-id>

<detail>80:EXPIRED</detail>

</message-event>

</message-events>

Error codes for detailed element Description

00:NOT_APPLICABLE Reason code is not applicable

10:SUBSCRIBER_NOT_RECOGNIZED
Response from operator, the operator does not recognize

the consumer

page 64/73

20:INSUFFICIENT_FUNDS
Response from operator, the consumer cannot fulfil the

purchase

30:MESSAGEQUEUE_FULL Response from operator, the operation is rejected

40:INVALID_CONTENT_METADATA Response from the operator, the operation is rejected

50:CHARGING_ERROR The charging operation cannot be performed

60:SUBSCRIBER_BLOCKED
Response from operator, the subscriber is blocked for this

service.

00: NOT_APPLICABLE Reason code is not applicable

70:SUBSCRIBER_NOT_REGISTERED
Response from operator, the subscriber must register at

the operator to enable the service.

80:EXPIRED Message could not be terminated within valid interval

90:DELETED Message was deleted from the operator

100:HANDSET_ERROR
Message could not be terminated due to a failure of the

mobile device, e.g. SIM card full

110:NETWORK_ERROR
Message could not be terminated due to a failure of the

mobile operator

2.1.3. SMS receiving (MO)
Incoming SMS (MO) are redirected to the receiver’s application per http POST request.

As a response (response) to the request the http status codes 200 (OK) or 202 (Ac-

cepted) are expected. Additionally, the body of the response has to contain “OK”, other-

wise the delivery of the SMS will be restarted by a retry-mechanism.

Name Meaning

Msg (Alternative to the parameter data) The content of the text message.

Data (Alternative to the parameter msg) The content of the binary message.

Snr The source identifier of the Message

Dnr The receiver’s number of the message, e.g. the short code

Example for receiving a text message:

http://destinationApplicationURL?msg=TestNachricht&snr=491711234567&dnr=81234

2.2. SMS via SMPP

The SMPP interface of the MMG can be used for sending SMS MT messages, receiving

SMS MO messages and delivery reports (DLR) when requested.

2.2.1. Confirmation

2.2.1.1. SMPP account details
There is one bind per SMPP account. If you need more connections please apply for more

accounts.

Host <MMG IP address>

Port 2775

System-ID <system-id>

Password <password>

http://destinationapplicationurl/?msg=TestNachricht&snr=491711234567&dnr=81234

page 65/73

System_Type <system-type>

2.2.1.2. IP Access

To access the 4Pay SMPP server your client IP range must be announced and added to the

client configuration.

2.2.2. Supported SMPP PDUs

Payload SMPP PDU types Control SMPP PDU types

submit_sm / submit_resp bind_transmitter / bind_transmitter_resp

deliver_sm / deliver_resp bind_receiver / bind_receiver_resp

 bind_transceiver / bind_transceiver_resp

 enquire_link / enquire_link_resp

 unbind / unbind_resp

2.2.3. Parameter Description

2.2.3.1. Source Adress / Destination Adress

Adress Value Type of Number (TON) Number Plan Indicator

49123456789 0x01 International 0x01 MSISDN

123456789 0x02 National 0x02 MSISDN

4Pay 0x05 Alphanumeric 0x00

12345 0x00 Shortcode 0x09 Shortcode

The Type of the source address is defined by the TON and NPI parameters. Alpha numeric

senders are limited to a maximum length of eleven characters MSISDN sender maximum

length is 15 (see E.164).

2.2.3.2. Data Coding

Data Coding

0x00 Default GSM

0x01 US-ASCII

0x02 Binary

0x03 Iso 8859-1 (Latin-1)

0x04 Binary

0x06 Cyrillic

0x08 UCS2/UTF-16BE

2.2.3.3. MSISDN Format

The MSISDN (maximum length is 15 digits) is built up as:

MSISDN CC + NDC + SN

CC Country Code

page 66/73

NDC National Destination Code

SN Subscriber Number

2.2.3.4. Enquire link

The enquire link timeout is set to 120 seconds.

2.2.4. Reason Codes
According to Appendix B Table B-11 you can receive the following extended delivery status

information in the field “err”

Reason Code Status (field: stat) Description

000 Not applicable Reason code is not applicable

010 UNDELIV

Response from operator, the oper-

ator does not recognize the con-

sumer

020 UNDELIV
Response from operator, the con-

sumer cannot fulfil the purchase

030 REJECTD
Response from operator, the oper-

ation is rejected

040 UNDELIV
Response from the operator, the

operation is rejected

050 UNDELIV
The requested charging operation

cannot be performed

060 REJECTD

Response from operator,

the subscriber is blocked for this

service.

070 UNDELIV

Response from operator, the sub-

scriber must register at the opera-

tor to enable the service.

080 EXPIRED
Message could not be terminated

within valid interval

090 DELETED
Message was deleted from the op-

erator

100 UNDELIV Handset error

110 UNDELIV Network error

3. MMS

3.1. MMS transmission (MT)

The transmission of MMS messages (exclusively) takes place with the help of HTTP

multipart POST Request (multipart/form-data) according to RFC 2045

3.1.1. Service URL
http://<IPAddressMMG>:8080/merlix/rest/sendmms2

The interface expects parameters according to the following chart. The block M/O states if a

parameter is optional or mandatory.

1 SMPP v3.4 Issue 1.2 -> http://www.smsforum.net/SMPP_v3_4_Issue1_2.zip

page 67/73

3.1.2. HTTP request parameter

Name M/O Bedeutung

dnr M The receiver’s number, e.g. +491701234567

snr M The source identifier of the message.

subject O The subject heading of the MMS.

login M
The login name of the account which is used for the

transmission (is delivered by 4Pay).

pin M
The password of the user’s account (is delivered by

4Pay).

service M
The service which is used for the transmission (is deliv-

ered by 4Pay).

callbackurl O URL to which the DLRs have to be reported.

externaldata O

The data which was given by the initiator and which is

included in the DLR reports; the setting of this parame-

ter is only sensible if the callback url is set, too.

The contents of the MMS (SMIL-file, pictures, audio-files, videos, texts, etc.) are transmitted

with arbitrary names in attachments.

3.1.3. MMS MT Response format

Response Code Example http-Response Description

200

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_ACCEPTED</type>

<time>04.09.2008 11:45:08

CEST</time>

<message-id>987654321ABCD</message-

id>

<external-data>1234567890</external-

data>

</message-event>

</message-events>

Message has been

accepted by the

MMG.

202

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_BLACKLISTED</type>

<time>04.09.2008 11:45:08

CEST</time>

</message-event>

</message-events>

Message will not

be sent since it is

on the blacklist.

Response Code Example http-Response Description

400

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_INVALID</type>

An address cannot

be parsed.

page 68/73

<time>04.09.2008 11:45:08

CEST</time>

</message-event>

</message-events>

400

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_ACCEPTION_EXCEPTION</type>

<time>04.09.2008 11:45:08

CEST</time>

</message-event>

</message-events>

Further errors.

403

<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_ACCEPTION_FORBIDDEN</type>

<time>04.09.2008 11:45:08

CEST</time>

</message-event>

</message-events>

Wrong login, pin

or service.

3.2. DLR - Receiving

If a Callback-URL has been indicated during the transmission and if the SMS Gateway re-

ceives a DLR, this DLR will be reported to the Callback-URL. Therefore, the URL is called

and meanwhile a XML document is delivered as the parameter “data”. If a data for exter-

naldata has been indicated during the transmission it will be reported as well.

Example:
<?xml version="1.0">

<message-events>

<message-

event>

<type>MT_DELIVERED_TO_PHONE</type>

<time>04.09.2008 11:45:10 CEST</time>

<message-id>AB10000</message-id>

<external-data>A1231AF</external-data>

</message-

event>

</message-events>

Possible Data for type are:

Type Description

MT_DELIVERED_TO_PHONE The message has been delivered to the end device.

MT_NOT_DELIVERED_TO_PHONE The message could not be delivered to the end device.

MT_DELIVERED_EXTERNAL
The SMS Gateway has delivered the message to an

external system in order to send it.

The receiving system (the DLR-report-receiver) has to give back a http-status code in the range

2xx in order to confirm the receiving of the DLR. Other status codes lead to new delivery-

attempts until either a configured, maximum number of attempts is exceeded or alternatively a

new delivery-attempt leads to a status code in the range 2xx.

page 69/73

3.3. MMS receiving (MO)

The MMS MO will be send to the receiver’s application (target-URL) as http multipart POST

Request (multipart/form-data) according to RFC 2045.

Name Meaning

messageId Message ID

Sender Source identifier

Receiver Target-number

Subject Subject

Attachment00 Appendix 1 (picture, Soundfile, SMIL, etc.)

The attachments of the MMS MO (SMIL-file, picture, audio files, videos, texts, etc.) are taken

over directly from the Multipart-Request. As a response (response) to the request the http

status code 200(OK) or 202(Accepted) are expected. Additionally, the body of the response

must begin with “OK” or “<status>OK</status>”, otherwise the delivery of the SMS will be

restarted by a retry-mechanism.

Example: Receiving MMS MO from MSISDN +491701234567 to 20002

Request:

POST /deliverMmsMo HTTP/1.1

User-Agent: Jakarta Commons-HttpCli-

ent/3.1 Host: localhost

Content-Length: 8244

Content-Type: multipart/form-data; bound-

ary=BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="mes-

sageId" Content-Type: text/plain; char-

set=US-ASCII Content-Transfer-Encoding: 8bit

8a95c141189872240118987586970003

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data;

name="sender" Content-Type: text/plain;

charset=US-ASCII Content-Transfer-Encod-

ing: 8bit

+491701234567

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="re-

ceiver" Content-Type: text/plain; char-

set=US-ASCII Content-Transfer-Encoding:

8bit

20002

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="sub-

ject" Content-Type: text/plain; char-

set=US-ASCII Content-Transfer-Encoding:

8bit

page 70/73

Test-MMS MO

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="oper-

ator" Content-Type: text/plain; charset=US-

ASCII Content-Transfer-Encoding: 8bit

262-02

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="attach-

ment00"; filename="fit_fill.txt"

Content-Type: text/plain; name=fit_fill.txt; charset=ISO-

8859-1 Content-Transfer-Encoding: binary

Hallo Test

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="attachment01"; filename="blue-

a.jpg" Content-Type: image/jpeg; name=blue-a.jpg; charset=ISO-8859-1

Content-Transfer-Encoding:

binary ÿØÿà....<binary jpg

data>

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc

Content-Disposition: form-data; name="attach-

ment02"; filename="SMILSample10.smil"

Content-Type: application/smil; name=SMILSample10.smil; charset=ISO-

8859-1 Content-Transfer-Encoding: binary

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<head>

<layout>

<region id="a" left="10%" top="10%" width="150"

height="80" backgroundColor="green" fit="fill"/>

<region id="text" left="10%" top="0"/>

</layout>

</hea

d>

<body>

<par dur="indefinite">

<text src="fit_fill.txt" region="text"/>

</par>

</bod

y>

</smil>

--BUihzThAGydQUwHl7xwaWi35lfattxLzOWc--

Response:

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Cache-Control: no-cache, must-revali-

date Content-Type: text/html; char-

set=ISO-8859-1 Content-Length: 21

Date: Mon, 10 Mar 2008 09:14:07 GMT

<status>OK</status>

http://www.w3.org/2001/SMIL20/Language

page 71/73

4. Number Lookup

The Number Lookup service is an asynchronous http service for identifying the mobile

network of a given mobile phone number (MSISDN).

4.1. Number Lookup via HTTP

4.1.1. Service - URL

The number lookup service is provided at the following

URL:(POST): http://<IPAddressMMG>/merlix/rest/numberlookup

4.1.2. HTTP Request Parameter

Name Use Meaning Example

login M 4Pay customer account name customer42

pin M 4Pay customer account password qHg6cZ728

service M Service profile Nltest47

msisdn M
Mobile phone number in international

format
+491701234567

callbackurl M
The lookup result will be delivered to this
URL of the customer

http://12.34.56.78/nlresult

extid O
Custom identifier which will be included
in the callback

AZ5342

4.1.3. Number Lookup Response Format

http response

code

Example re-

sponse
Meaning

200 +OK Request accepted

403 Forbidden Unauthorised acces

400 <error message> Request rejected

4.1.4. Callback process

The result of the number lookup is sent by a HTTP POST request to the URL passed as

parameter callbackurl. It consists of a simple xml document (content type is text/xml) with

the elements msisdn, mcc, mnc and optionally error.

The receiving system has to give back a http-status code in the range 2xx in order to confirm

the receiving of the NL callback. Other status codes lead to new delivery-attempts until either

a configured, maximum number of attempts is exceeded or alternatively a new delivery-

attempt leads to a status code in the range 2xx.

Element name Meaning

MSISDN Mobile phone number

Mcc Mobile Country Code

Mnc Mobile Network code

Ported Portability status of the MSISDN (true, false, unknown)

Error
Error code (attribute) and short description, if mcc-mnc cannot be determined for a

MSISDN

http://12.34.56.78/nlresult

page 72/73

Example 1:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<lookupResultList>

<lookupResult>

<msisdn>+491701234567</msisdn>

<mcc>262</mcc>

<mnc>01</mnc>

<ported>false</ported>

</lookupResult>

</lookupResultList>

Example 2:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<lookupResultList>

<lookupResult>

<msisdn>+491701234568</msisdn>

<error code="330">unknown subscriber</error>

</lookupResult>

</lookupResultList

4.1.5. Callback error codes

Error code Error Message Meaning

310 Lookup Fail Technical problem

320 Invalid MSISDN The specified msisdn is not valid

330 Unknown Subscriber The MSISDN is not registered in HLR

4.2. Number Lookup via SMPP

The number lookup service can be used via SMPP by sending a virtual SMS (submit_sm

PDU) to the mobile phone number (MSISDN) in question. The <system-type> of the con-

nection has to be configured exclusively for number lookup. The result of the NL will be

delivered as DLR (deliver_sm PDU) in the “text” field of the shortMessage. It can contain the

status “lookup failed” in case of an error, the status “unknown subscriber” if the MSISDN is

not registered or the MCC, MNC and ported status of the MSISDN.

Port Description

T MSISDN is ported

F MSISDN is not ported

U Ported status is unknown

Example for non ported NLR results

shortMessage of DLR

id:0010153721 sub:001 dlvrd:001 submit date:1105271458 done date:1105271747 stat:DELIVRD err:000 text:
MCC=262 MNC=01 PORT=F

page 73/73

4.3. Bulk Number Lookup via Mail

The Bulk Number Lookup Service is an asynchronous mail (SMTP) service for identifying the

mobile network of a list of mobile phone numbers (MSISDN). The mail must contain a list of

MSISDNs as attachment. The result will be sent back to the originator of the mail and contains

a CSV document as attachment.

4.3.1. Mail Format

The originator’s email address must be registered for Number Lookups in the MMG by 4PAY.

The destination address will be provided by 4PAY after registration. The subject, body and the

name of the attachment does not matter. The mail must contain one attachment: a text file with

one MSISDN (international format) per line.

Example for attachment textfile:

+491701234567 // +491701234568 // +491771234569

4.3.2. Mail response

The response contains a text file in CSV format as attachment. The value separator is a comma

and each line consists of 4 fields: MSISDN, MCC, MNC and portability status (true / false /

unknown). If the network cannot be identified for a MSISDN then the MCC field contains the

error message and the following fields are empty.
Example for mail response:

123456, invalid msisdn, , // +491731234567, 262,02, false

+491771234568, 262,03, false // +491731234569, unknown subscriber, ,

+491701234561, 262, 07, true

